Board of Studies
Course Proposal Template

PROPOSED COURSE TITLE: The Design of, and analysis for, Internet of Things (DAIT)

PROPOSER(S): D K Arvind

DATE: 13th February, 2016
SUMMARY

This template contains the following sections, which should be prepared roughly in the order in which they appear (to avoid spending too much time on preparation of proposals that are unlikely to be approved):

1. Case for Support
 – To be supplied by the proposer and shown to the BoS Academic Secretary prior to preparation of an in-depth course description

1a. Overall contribution to teaching portfolio

1b. Target audience and expected demand

1c. Relation to existing curriculum

1d. Resources

2. Course descriptor
 - This is the official course documentation that will be published if the course is approved, ITO and the BoS Academic Secretary can assist in its preparation

3. Course materials
 - These should be prepared once the Board meeting at which the proposal will be discussed has been specified

3a. Sample exam question

3b. Sample coursework specification

3c. Sample tutorial/lab sheet question

3d. Any other relevant materials

4. Course management
 - This information can be compiled in parallel to the elicitation of comments for section 5.

4a. Course information and publicity

4b. Feedback

4c. Management of teaching delivery

5. Comments
 - To be collected by the proposer in good time before the actual BoS meeting and included as received

5a. Year Organiser Comments

5b. Degree Programme Co-Ordinators

5c. BoS Academic Secretary

SECTION 1 – CASE FOR SUPPORT

(This section should summarise why the new course is needed, how it fits with the existing course portfolio, the curricula of our Degree Programmes, and delivery of teaching for the different years it would affect.)

1a. Overall contribution to teaching portfolio

(Explain what motivates the course proposal, e.g. an emergent or maturing research area, a previous course having become outdated or inappropriate in other ways, novel research activity or newly acquired expertise in the School, offerings of our competitors.)

This course replaces the existing 10-credit System Level Integration Practical course. Two changes are proposed:

1. The original title was coined in 1999 and the new one accurately reflects the material taught on the course for more than a decade. The course uses platforms and software environment developed as part of the EPSRC-funded "Speckled Computing" research project. This field has now matured into a vibrant commercial sector with a demand for personnel trained in the principles underlying the systematic design of Internet of Things and the accompanying sensor data analysis.

2. The rating for this course has been increased from 10 credits to 20 credits. The coursework weighting has been reduced from 100% to 70%; the rest is allocated to the written examination which tests the material delivered in a series of 10 lectures in the first 5 weeks of the course. In summary, DAIT combines hands-on experience with a theoretical foundation (delivered during the lectures) for the principled design of an IoT system, from a concept to a working prototype.

1b. Target audience and expected demand

(Describe the type of student the course would appeal to in terms of background, level of ability, and interests, and the expected class size for the course based on anticipated demand. A good justification would include some evidence, e.g. by referring to projects in an area, class sizes in similar courses, employer demand for the skills taught in the course, etc.)

McKinsey estimates that IoT will have a potential economic impact between $3.9 to $11.1T by 2025 [1]. The course will appeal to UG4/5/MSc students interested in this emerging field of digitising the physical world with sensors and actuators connected wirelessly to the internet. It should attract students with interests in networking, embedded systems, and sensor data analytics. Others might wish to build on the Systems Design Project (SDP) and experience in full the process of realising their idea as a working IoT prototype.

Class size of 50 students in Year 1, 75 students in Year 2 and reaching a steady state of 100 students in Year 3.

1c. Relation to existing curriculum

This section should describe how the proposed course relates to existing courses, programmes, years of study, and specialisms. Every new course should make an important contribution to the delivery of our Degree Programmes, which are described at http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm.

Please name the Programmes the course will contribute to, and justify its contribution in relation to courses already available within those programmes. For courses available to MSc students, describe which specialism(s) the course should be listed under (see http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas), and what its significance for the specialism would be. Comment on the fit of the proposed course with the structure of academic years for which it should be offered. This is described in the Year Guides linked from http://web.inf.ed.ac.uk/infweb/student-services/ito/students/.

Discussions have taken place to ensure that DAIT complements the other IoT-based course being proposed by Paul Patras and Bjoern Franke. It should appeal to students on the Computer Science, Software Engineering and Artificial Intelligence degree programme and the joint degree variants (we even had a straight Mathematics Degree student taking SLIP in 2015-16!). DAIP will be open to students on a majority of MSc specialisms.

1d. Resources

While course approvals do not anticipate the School's decision that a course will actually be taught in any given year, it is important to describe what resources would be required if it were run. Please describe how much lecturing, tutoring, exam preparation and marking effort will be required in steady state, and any additional resources that will be required to set the course up for the first time. Please make sure that you provide estimates relative to class size if there are natural limits to its scalability (e.g. due to equipment or space requirements). Describe the profile of the course team, including lecturer, tutors, markers, and their required background. Where possible, identify a set of specific lecturers who have confirmed that they would either like to teach this course apart from the proposer, or who could teach the course in principle. It is useful to include ideas and suggestions for potential teaching duty re-allocation (e.g. through course sharing, discontinuation of an existing course, voluntary teaching over and above normal teaching duties) to be taken into account when resourcing decisions are made.

DAIT will require access to a larger replacement for the erstwhile SLIP Base in Appleton Tower where they can work with the development boards for the coursework part of the course. In the steady state we will require 50 development boards, each of which costs £54. [https://www.aliexpress.com/item/MultiBoard-NRF52832-BLE-development-board-rich-peripherals-strong-support-for-BLE-NORDIC/32726396562.html]. Each pair will be provided with an Orient speck (ARM core, IMU sensors, BTLE, and 2.4GHz radio) for the demonstration of their concept. DAIT would require around 9 hours/week of demonstrator/tutor time to provide F2F/online support [Total: 90 hours]
SECTION 2 – COURSE DESCRIPTOR

[This is the official course descriptor that will be published by the University and serves as the authoritative source of information about the course for student via DRPS and PATH. Current course descriptions in the EUCLID Course Catalogue are available at www.euclid.ed.ac.uk under 'DPTs and Courses', searching for courses beginning 'INFR'.]

2a. Course Title [Name of the course.]:

The Design of, and analysis for, Internet of Things (DAIT)

2b. SCQF Credit Points:

[The Scottish Credit and Qualifications Framework specifies where each training component provided by educational institutions fits into the national education system. Credit points per course are normally 10 or 20, and a student normally enrols for 60 credits per semester. For those familiar with the ECTS system, one ECTS credit is equivalent to 2 SCQF credits. See also http://www.scqf.org.uk/The%20Framework/Credit%20Points.]

20 points

SCQF Credit Level:

[These levels correspond to different levels of skills and outcomes, see http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf At University level, Year 1/2 courses are normally level 8, Year 3 can be level 9 or 10, Year 4 10 or 11, and Year 5/MSc have to be level 11. MSc programmes may permit a small number (up to 30 credits overall) of level 9 or 10 courses.]

Level 11

Normal Year Taken: 1/2/3/4/5/MSc

[While a course may be available for more than one year, this should specify when it is normally taken by a student. “5” here indicates the fifth year of undergraduate Masters programmes such as MInf.]

Year 4

Also available in years: 1/2/3/4/5/MSc

Different options are possible depending on the choice of SCQF Credit Level above: for level 9, you should specify if the course is for 3rd year undergraduates only, or also open to MSc students (default); for level 10, you should specify if the course is available to 3rd year and 4th year undergraduates (default), 4th year undergraduates only, and whether it should be open to MSc students; for level 11, a course can be available to 4th and 5th year undergraduates and MSc students (default), to 5th year undergraduates and MSc students, or to MSc students only]

Year 4/5/MSc
2c. Subject Area and Specialism Classification:

[Any combination of Computer Science, Artificial Intelligence, Software Engineering and/or Cognitive Science as appropriate. For courses available to MSc students, please also specify the relevant MSc specialist area (to be found in the online MSc Year Guide at http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas), distinguishing between whether the course should be considered as “core” or “optional” for the respective specialist area.]

UG subject area: Computer Science, Artificial Intelligence, Software Engineering
MSC specialism : Computer Systems, Software Engineering & High-Performance Computing; Cyber Security & Privacy; Intelligent Robotics; Machine Learning; Agents, Knowledge and Data.

Appropriate/Important for the Following Degree Programmes:

[Please check against programmes from http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm to determine any specific programmes for which the course would be relevant (in many cases, information about the Subject Area classification above will be sufficient and specific programmes do not have to be specified). Some courses may be specifically designed for non-Informatics students or with students with a specific profile as a potential audience, please describe this here if appropriate.]

See above.

Timetabling Information:

[Provide details on the semester the course should be offered in, specifying any timetabling constraints to be considered (e.g. overlap of popular combinations, other specialism courses, external courses etc).]

Offered in Semester – 1; Coursework due at 4pm on the Friday in Week 1 in Semester – 2; Examination in April;
2d. Summary Course Description:

[Provide a brief official description of the course, around 100 words. This should be worded in a student-friendly way, it is the part of the descriptor a student is most likely to read.]

DAIT is concerned with the emerging field of digitising the physical world with sensors and actuators connected wirelessly to the internet and the analysis of the sensor data to provide actionable information. The course combines hands-on experience of realising your idea as a prototype IoT system together with lectures which provide the theoretical foundation for IoT. The lectures will be illustrated with a number of IoT case studies undertaken by the lecturer over the past fifteen years.

[Provide an academic description, an outline of the content covered by the course and a description of the learning experience students can expect to get. See guidance notes at: http://www.studentsystems.is.ed.ac.uk/staff/Support/User_Guides/CCAM/CCAM_Information_Captured.html]

The course aims to deliver a sound understanding of the design and analysis of Internet of Things through lectures and practice. The lectures provide the foundational knowledge in sensors and actuators, fusion of data from multiple sensors, and topics in sensor data analytics for sensor data calibration, pre-processing and extraction of features in time-series sensor data, classification methods applied to these features. The DAIT practical is a major piece of coursework conducted by students working in pairs to develop an IoT application using the Orient speck platform. Students will experience all the stages in the design and implementation of a complex system, from its specification to the demonstration of a working prototype. They will be exposed to aspects of embedded systems programming, networking algorithms, wireless protocols, user interface design, system integration and testing. Each pair will demonstrate a working prototype of your IoT idea at the end of 10 weeks and deliver a written report.

Students working in pairs, will be given an Orient speck (ARM core, 2.4 GHz radio, Bluetooth Low Energy, 3-axis gyroscope, accelerometer, magnetometer) and access to dev board and programming environment. API and libraries provided for sensor data, wireless communication from the Orient. Each pair defines its idea of an application using the Orient speck and realises it as a working prototype at the end of 10 weeks. The final report will be due at the end of Week-1 in the second semester.

Pre-Requisite Courses:

[Specify any courses that a student must have taken to be permitted to take this course. Pre-requisites listed in this section can only be waived by special permission from the School's Curriculum Approval Officer, so they should be treated as "must-have". By default, you may assume that any student who will register for the course has taken those courses compulsory for the degree for which the course is listed in previous years. Please include the FULL course name and course code.]

Computer Communications and Networking

Introduction to Machine Learning
Co-Requisite Courses:

[Specify any courses that should be taken in parallel with the existing course. Note that this leads to a timetabling constraint that should be mentioned elsewhere in the proposal. Please include the FULL course name and course code].

N/A

Prohibited Combinations:

[Specify any courses that should not be taken in combination with the proposed course. Please include the FULL course name and course code].

N/A

Other Requirements:

[Please list any further background students should have, including, for example, mathematical skills, programming ability, experimentation/lab experience, etc. It is important to consider that unless there are formal prerequisites for participation in a course, other Schools can register their students onto our courses, so it is important to be clear in this section. If you want to only permit this by special permission, a statement like "Successful completion of Year X of an Informatics Single or Combined Honours Degree, or equivalent by permission of the School." can be included.]

Students should be proficient in Java and Python programming.

Available to Visiting Students: Yes/No

[Provide a justification if the answer is No.]

Yes, as long as they satisfy the entry requirements.
2e. Summary of Intended Learning Outcomes (MAXIMUM OF 5):

[List the learning outcomes of the course, emphasising what the impact of the course will be on an individual who successfully completes it, rather than the activity that will lead to this outcome. Further guidance is available from https://canvas.instructure.com/courses/801386/files/24062695]

On completion of this course, the student will have

1. An understanding of the constituent parts of a typical IoT system, a selection of sensors and actuators, and an appreciation of methods employed to address the security and privacy issues in IoT.

2. A knowledge of a selection of sensor fusion algorithms, and data analytic methods for pre-processing of time-series sensor data, feature extraction and its classification, and illustrated with case studies.

3. Experience the practical issues involved in the specification, design and implementation of an IoT system of the students’ application idea.

4. Experience working with another team member with complimentary skill sets, and develop skills in project management, requirements capture and negotiations.

5. Experience using tools such as compilers for IoT development board using inertial sensors, system-level simulators and web-authoring tools for the final report.

Assessment Information

[Provide a description of all types of assessment that will be used in the course (e.g. written exam, oral presentation, essay, programming practical, etc) and how each of them will assess the intended learning outcomes listed above. Where coursework involves group work, it is important to remember that every student has to be assessed individually for their contribution to any jointly produced piece of work. Please include any minimum requirements]
for assessment components e.g. student must pass all individual pieces of assessment as well as course overall].

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>Written Examination</td>
</tr>
<tr>
<td>70%</td>
<td>Coursework:</td>
</tr>
<tr>
<td></td>
<td>[Technical evaluation – 60%]: Completion of the project; degree of difficulty; quality and amount of work; justification of design decisions; design for reusability.</td>
</tr>
<tr>
<td></td>
<td>[Presentation – 20%]: Quality of the oral presentation, website and report, and references to other sources.</td>
</tr>
<tr>
<td></td>
<td>[Analysis – 20%]: Critical analysis using both quantitative methods and reflection on design decisions.</td>
</tr>
</tbody>
</table>

Assessment Weightings:

- Written Examination: 30%
- Practical Examination: 0%
- Coursework: 70%

Time spend on assignments:

[Weightings up to a 70/30 split between exam and coursework are considered standard, any higher coursework percentage requires a specific justification. The general expectation is that a 10-point course will have an 80/20 split and include the equivalent of one 20-hour coursework assignment (although this can be split into several smaller pieces of coursework). The Practical Examination category should be used for courses with programming exams. You should not expect that during term time a student will have more than 2-4 hours to spend on a single assignment for a course per week. Please note that it is possible, and in many cases desirable, to include formative assignments which are not formally assessed but submitted for feedback, often in combination with peer assessment.]

<table>
<thead>
<tr>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Coursework – 120 hours: 10 hours/week on the coursework; 20 hours for the final report preparation.</td>
</tr>
</tbody>
</table>

Academic description:

[A more technical summary of the course aims and contents. May include terminology and technical content that might be more relevant to colleagues and administrators than to students.]
Lecture -1: Overview of IoT: industrial, wearable, environmental, healthcare, and digital media, illustrated with videos of case studies; architecture of a typical IoT systems and its components; Overview of privacy and security issues.

Lecture-2: Sensors and actuators – Introduction to commonly-used sensors/actuators, mode of operation, and data format.

Lecture 3-4: Sensor fusion algorithms: data from homogeneous and heterogeneous sensors; examples include quaternion calculations with 6-DOF IMU sensor for 3-D animation.

Lecture 5-6: Sensor data analytics: calibration of sensor data against reference sensors; use of Bland-Altman plots for sensor data comparisons, illustrated with examples in healthcare and environmental monitoring.

Lecture 7-8: Sensor data analytics: Methods for pre-processing and feature extraction methods in time-series sensor data - Time warp algorithm; Principal component analysis; feature extraction methods illustrated with examples of IoT for Well being, musical instrument tutoring.

Lecture 9-10: Sensor data analytics: Classification methods using Machine Learning/Hidden Markov models (Naïve Bayes, k-NN, Decision Tree, Logistic Regression, Multilayer Perceptron, SVM) applied to features in time-series sensor data, illustrated with examples in sports, healthcare.

Schedule: Discover - Week 1 First meeting of the DAIT pairs; Explanation of the assignment; Introduction to the platform and programming environment; Brainstorm ideas for IoT applications.

Define - Week 2 Settle on a choice of application; Capture the requirements and use cases for the application; Assignment of responsibilities and tasks; Tutorial on programming the platform; Creation of the group website

Develop - Week 3 – 5 Implementation, Testing, Definition of metrics for performance assessment and weekly review of progress

Week 6 First system integration and demonstration to course lecturer [Feedback to the students]

Week 7 – 8 Refinement and Testing

Week 9 Second system integration and presentation to course lecturer; Performance analysis; Preparation of the presentation and final demonstration [Feedback to the students]

Deliver - Week 10 10-minute presentation and demonstration by each group to an invited audience [Feedback to the students]

Submission: The final deliverable due on the Friday in Week1 in Semester-2 (deadline - 4pm) is a website created by each group (3 groups are shown as representative examples):

Group C - http://groups.inf.ed.ac.uk/teaching/daitC17-18/index.html
Relevant QAA Computing Curriculum Sections:

[Please see http://www.qaa.ac.uk/en/Publications/Documents/SBS-Computing-consultation-15.pdf to check which section the course fits into.]

Graduate Attributes, Personal and Professional skills:

[This field should be used to describe the contribution made to the development of a student’s personal and professional attributes and skills as a result of studying this course – i.e. the generic and transferable skills beyond the subject of study itself. Reference in particular should be made to SCQF learning characteristics at the correct level http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf].

| Develop communication skills (oral/written) for capturing the requirements and specification of complex systems. |
| Develop inter-personal skills when working with another team member in dividing the work up and dealing with delays, setbacks and other issues. |
| Develop skills in project management, requirements capture and negotiations. |

Breakdown of Learning and Teaching Activities:

[Total number of lecture hours and tutorial hours, with hours for coursework assignments.]

[The breakdown of learning and teaching activities should only include contact hours with the students; everything else should be accounted for in the Directed Learning and Independent Learning hours.

The total being 10 x course credits. Assume 10 weeks of lectures slots and 10 weeks of tutorials, though not all of these need to be filled with actual contact hours. As a guideline, if a 10-pt course has 20 lecture slots in principle, around 15 of these should be filled with examinable material; the rest should be used for guest lectures, revision sessions, introductions to assignments, etc. Additional categories of learning and teaching activities are available, a full list can be found at:

Supervise practical/Workshop/Studio hours: 10 hours
Summative assessment hours: 0.5 hours
Feedback/Feedforward hours: 0.5 hours
Directed Learning and Independent Learning hours: 179 hours
Total hours: 200 hours

You may also find the guidance on ‘Total Contact Teaching Hours’ and ‘Examination & Assessment Information’ at:
http://www.studentsystems.ed.ac.uk/Staff/Support/User_Guides/CCAM/CCAM Informationen_Captured.html

Keywords:
DAIP, Internet of Things.

SECTION 3 - COURSE MATERIALS

3a. Sample exam question(s)

Sample exam questions with model answers to the individual questions are required for new courses. A justification of the exam format should be provided where the suggested format non-standard. The online list of past exam papers gives an idea of what exam formats are most commonly used and which alternative formats have been http://www.inf.ed.ac.uk/teaching/exam_papers/.

The duration of the examination will be 120 minutes and the students examination will have a choice to answer 2 out of 3 questions.
3b. Sample coursework specification

[Provide a description of a possible assignment with an estimate of effort against each sub-task and a description of marking criteria.]

The only coursework assignment will be worth 70% of the marks. The DAIP practical is a major piece of coursework conducted by students working in pairs to develop an Internet of Things application based on the Orient speck platform. Students will experience all the stages in the design and implementation of a complex system, from its specification to the demonstration of a working prototype. They will be exposed to aspects of embedded systems programming, wireless protocols, user interface design, system integration and testing.

Each group will be given a development board and software development environment. Your task is to define an application which takes into account the capabilities of the platform, and plan and implement a working prototype for demonstration to an invited audience on 29th November, 2017. Each pair will maintain a website which records the progress of their project and contain the final individual reports.

Organisation: Rooms xxx and xxx (DAIP Base) in Appleton Tower are reserved for the exclusive use of DAIP students for the duration of the course until 19th January, 2018. Each pair can meet the tutor weekly on Wednesdays in the DAIP Base between 10:00 – 13:00.

Schedule:

- **Discover**
 - Week 1: First meeting of the DAIP class; Explanation of the assignment; Introduction to the platform and programming environment; Brainstorm ideas for IoT applications.

- **Define**
 - Week 2: Settle on a choice of application; Capture the requirements and use cases for the application; Assignment of responsibilities and tasks to members; Tutorial on programming the platform; Creation of the pair website.

- **Develop**
 - Week 6: First system integration and demonstration to course lecturer [Feedback to the students].
 - Week 7 – 8: Refinement and Testing.
 - Week 9: Second system integration and presentation to course lecturer; Performance analysis; Preparation of the presentation and final demonstration [Feedback to the students].

- **Deliver**
 - Week 10 (29 Nov. 2017): 5-minute presentation and demonstration by each pair to an invited audience [Feedback to the students].

Submission: The final deliverable due on 19th January 2018 (deadline - 4pm) is a website created by each pair (representative examples for the first 3 paris):

- **Group A** - http://groups.inf.ed.ac.uk/teaching/daipa17-18/index.html
- **Group B** - http://groups.inf.ed.ac.uk/teaching/daipb17-18/index.html
- **Group C** - http://groups.inf.ed.ac.uk/teaching/daipc17-18/index.html

Each website should have a common section which gives an overview of the project, and individual reports by group members which are clearly marked.

Assessment:

Although working in groups, students will be awarded individual marks (out of 100) based on the final report, and the breakdown of marks and criteria for assessment are as follows:

- **Technical evaluation – 60%**: Completion of the project; degree of difficulty; quality and amount of work; justification of design decisions; design for reusability.
- **Presentation – 20%**: Quality of the oral presentation, website and report, and references to other sources.
- **Analysis – 20%**: Critical analysis using both quantitative methods and reflection on design decisions.

Final marks and feedback to the students will be delivered by 2 February, 2018.
3c. Sample tutorial/lab sheet questions

[Provide a list of tutorial questions and answers and/or samples of lab sheets.]

N/A

3d. Any other relevant materials

[Include anything else that is relevant, possibly in the form of links. If you do not want to specify a set of concrete readings for the official course descriptor, please list examples here.]
SECTION 4 - COURSE MANAGEMENT

4a. Course information and publicity

[Describe what information will be provided at the start of the academic year in which format, how and where the course will be advertised, what materials will be made available online and when they will be finalised. Please note that University and School policies require that all course information is available at the start of the academic year including all teaching materials and lecture slides.]

The course web page will be set up prior to the start of the academic year 2017-18 with the course description, coursework handout and the slides for the lectures 1 – 10.

4b. Feedback
[Provide details on feedback arrangements for the course. This includes when and how course feedback is solicited from the class and responded to, what feedback will be provided on assessment (coursework and exams) within what timeframe, and what opportunities students will be given to respond to feedback.

The University is committed to a baseline of principles regarding feedback that we have to implement at every level, these are described at http://www.docs.sasg.ed.ac.uk/AcademicServices/Policies/Feedback_Standards_Guiding_Pinciples.pdf.

Further guidance is available from http://www.enhancingfeedback.ed.ac.uk/staff.html.]

There will be a course feedback opportunity mid-way and at the end of the course.

4c. Management of teaching delivery

[Provide details on responsibilities of each course staff member, how the lecturer will recruit, train, and supervise other course staff, what forms of communication with the class will be used, how required equipment will be procured and maintained. Include information about what support will be required for this from other parties, e.g. colleagues or the Informatics Teaching Organisation.]

The 10 lectures over the first 5 weeks of Semester-1 will be delivered in a lecture theatre using slides which will be made available at the start of the course.

Each pair will be invited to attend at least 1 hour of F2F meeting with the course tutor as part of a group scheduled on Wednesday mornings between 10am – 1pm.
SECTION 5 - COMMENTS

(This section summarises comments received from relevant individuals prior to proposing the course. If you have not discussed this proposal with others please note this).

5a. Year Organiser Comments

(Year Organisers are responsible for maintaining the official Year Guides for every year of study, which, among other things, provide guidance on available course choices and specialist areas. The Year Organisers of all years for which the course will be offered should be consulted on the appropriateness and relevance on the course. Issues to consider here)
include balance of course offerings across semesters, subject areas, and credit levels, timetabling implications, fit into the administrative structures used in delivering that year.

5b. BoS Academic Secretary

[Any proposal has to be checked by the Secretary of the Board of Studies prior to discussion at the actual Board meeting. This is a placeholder for their comments, mainly on the formal quality of the content provided above.]